Decomposing prediction uncertainty into its aleatoric (irreducible) and epistemic (reducible) components is critical for the development and deployment of machine learning systems. A popular, principled measure for epistemic uncertainty is the mutual information between the response variable and model parameters. However, evaluating this measure requires access to the posterior distribution of the model parameters, which is challenging to compute. In view of this, we introduce a frequentist measure of epistemic uncertainty based on the bootstrap. Our main theoretical contribution is a novel asymptotic expansion that reveals that our proposed (frequentist) measure and the (Bayesian) mutual information are asymptotically equivalent. This provides frequentist interpretations to mutual information and new computational strategies for approximating it. Moreover, we link our proposed approach to the widely-used heuristic approach of deep ensembles, giving added perspective on their practical success.


翻译:将预测不确定性分解为偶然性(不可约)和认知性(可约)分量对于机器学习系统的开发与部署至关重要。一种流行且具有理论依据的认知不确定性度量是响应变量与模型参数之间的互信息。然而,评估该度量需要获取模型参数的后验分布,这在计算上具有挑战性。鉴于此,我们提出一种基于自助法的频率学派认知不确定性度量。我们的主要理论贡献是一个新颖的渐近展开式,揭示了所提出的(频率学派)度量与(贝叶斯)互信息在渐近意义上是等价的。这为互信息提供了频率学派的解释,并提出了近似计算的新策略。此外,我们将所提出的方法与广泛使用的深度集成启发式方法联系起来,为其实际成功提供了新的视角。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
21+阅读 · 2023年7月12日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
13+阅读 · 2021年5月25日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员