An a priori reduced order method based on the proper generalised decomposition (PGD) is proposed to compute parametric solutions involving turbulent incompressible flows of interest in an industrial context, using OpenFOAM. The PGD framework is applied for the first time to the incompressible Navier-Stokes equations in the turbulent regime, to compute a generalised solution for velocity, pressure and turbulent viscosity, explicitly depending on the design parameters of the problem. In order to simulate flows of industrial interest, a minimally intrusive implementation based on OpenFOAM SIMPLE algorithm applied to the Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras turbulence model is devised. The resulting PGD strategy is applied to parametric flow control problems and achieves both qualitative and quantitative agreement with the full order OpenFOAM solution for convection-dominated fully-developed turbulent incompressible flows, with Reynolds number up to one million.
翻译:根据适当的普遍分解(PGD),建议采用先验降序法,以使用 OpenFoAM 来计算工业环境中引起兴趣的动荡和压抑性流动的参数性解决办法。PGD 框架首次适用于动荡制度中的不可压缩的导航-斯托克斯方程式,以明确取决于问题的设计参数,计算速度、压力和动荡粘度的通用解决办法。为了模拟工业利益流动,以OpenFoAM SIMPLE 算法为基础,在Reynolds-平均导航-Stokes 公式和Spalart-Allmaras 波动模型中应用的最小侵入性执行。由此产生的PGD战略适用于对流控制问题进行准性调整,并在质和量两方面与OpenFOAM 解决方案完全以调控为主的可压缩流完全由Reynolds编号高达100万的可压缩流完全顺序取得一致。