We propose FNETS, a methodology for network estimation and forecasting of high-dimensional time series exhibiting strong serial- and cross-sectional correlations. We operate under a factor-adjusted vector autoregressive (VAR) model which, after accounting for pervasive co-movements of the variables by {\it common} factors, models the remaining {\it idiosyncratic} dynamic dependence between the variables as a sparse VAR process. Network estimation of FNETS consists of three steps: (i) factor-adjustment via dynamic principal component analysis, (ii) estimation of the latent VAR process via $\ell_1$-regularised Yule-Walker estimator, and (iii) estimation of partial correlation and long-run partial correlation matrices. In doing so, we learn three networks underpinning the VAR process, namely a directed network representing the Granger causal linkages between the variables, an undirected one embedding their contemporaneous relationships and finally, an undirected network that summarises both lead-lag and contemporaneous linkages. In addition, FNETS provides a suite of methods for forecasting the factor-driven and the idiosyncratic VAR processes. Under general conditions permitting tails heavier than the Gaussian one, we derive uniform consistency rates for the estimators in both network estimation and forecasting, which hold as the dimension of the panel and the sample size diverge. Simulation studies and real data application confirm the good performance of FNETS.
翻译:我们提出 FNETS,这是一种用于估计和预测高维时间序列的方法,其表现出强烈的串行和横截面相关性。我们运用了一个因子调整的向量自回归(VAR)模型,该模型考虑了变量之间普遍的运动——{\it 共同}因素,将剩余的变量之间的{\it 特有}动态依赖性建模为一个稀疏的 VAR 过程。FNETS 的网络估计包括三个步骤:(i)通过动态主成分分析进行因子调整,(ii)通过 $\ell_1$-正则化的 Yule-Walker 估计器估计潜在的 VAR 过程,(iii)估计偏相关性和长期偏相关性矩阵。通过这样做,我们学习了三个支撑 VAR 过程的网络,分别是代表变量之间 Granger 因果联系的有向网络,包含它们当前关系的无向网络,以及总结了引领-滞后和当前联系的无向网络。另外,FNETS 提供了一套方法,用于预测因子驱动和特有的 VAR 过程。在允许比高斯更重的尾部的一般条件下,我们推导出了网络估计和预测中估计器的均匀一致收敛速率,在高维面板的维数和样本大小发散时成立。模拟研究和实际数据应用证实了 FNETS 的良好性能。