Dialogue generation has been successfully learned from scratch by neural networks, but tends to produce the same general response, e.g., "what are you talking about?", in many conversations. To reduce this homogeneity, external knowledge such as the speaker's profile and domain knowledge is applied as an additional condition to diversify a model's output. The required knowledge to develop an effective conversation, however, is not always available, which is different from prior work's assumption that a model always has acquired sufficient knowledge before chatting. This problem can be detrimental when applying a dialogue model like this chatting online with unconstrained people and topics, because the model does not have the needed knowledge. To address this problem, we propose InjK, which is a two-stage approach to inject knowledge into a dialogue generation model. First, we train a large-scale language model and query it as textual knowledge. Second, we frame a dialogue generation model to sequentially generate textual knowledge and a corresponding response. Empirically, when a dialogue generation model can only access limited knowledge, our method outperforms prior work by producing more coherent and informative responses.
翻译:由神经网络从零开始成功生成对话, 但往往产生相同的一般回应, 比如“ 你在谈论什么? ”, 在许多对话中。 为了减少这种同质性, 外部知识, 如演讲者的简介和域知识, 被应用为使模型输出多样化的附加条件。 但是, 开发有效对话所需的知识并不总是可用, 这与先前的工作假设不同, 即模型在聊天前总是获得足够的知识。 当应用像这种对话模式在网上与不受限制的人和话题交谈这样的对话模式时, 这个问题可能会不利, 因为该模式并不具备所需的知识。 为了解决这个问题, 我们提议InjK, 这是将知识注入对话生成模型的两阶段方法。 首先, 我们训练一个大型语言模型, 并将它作为文字知识进行查询。 其次, 我们设置对话生成模型, 以便按顺序生成文字知识并做出相应的回应。 具有想象力的是, 当对话生成模型只能获取有限的知识时, 我们的方法会比先前的工作更一致, 产生更丰富性的反应。