Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.
翻译:深层的学习方法正在许多人工智能任务上取得越来越多的成绩。深层模型的一个主要限制是它们不易解释。这种限制可以通过开发解释预测的后期技术来规避,从而导致可解释的领域。最近,关于图像和文本的深层模型的可解释性已经取得重大进展。在图形数据、图形神经网络(GNN)及其可解释性方面正经历着迅速的发展。然而,对于GNN的解释性方法,既没有统一处理,也没有标准基准和评估测试台。在本次调查中,我们提供了对目前GNN的解释性方法的统一分类观点。我们对这个主题的统一分类处理为现有方法的共性和差异提供了亮点,并为进一步的方法发展奠定了基础。为了便于评估,我们专门为GNN的解释性制作了一套基准图表数据集。我们总结了当前用于评估GNN的解释性的数据集和指标。总而言之,这项工作为GNNN的解释性提供了统一的方法处理方法以及标准化的评估测试台。