OOD-CV challenge is an out-of-distribution generalization task. To solve this problem in object detection track, we propose a simple yet effective Generalize-then-Adapt (G&A) framework, which is composed of a two-stage domain generalization part and a one-stage domain adaptation part. The domain generalization part is implemented by a Supervised Model Pretraining stage using source data for model warm-up and a Weakly Semi-Supervised Model Pretraining stage using both source data with box-level label and auxiliary data (ImageNet-1K) with image-level label for performance boosting. The domain adaptation part is implemented as a Source-Free Domain Adaptation paradigm, which only uses the pre-trained model and the unlabeled target data to further optimize in a self-supervised training manner. The proposed G&A framework help us achieve the first place on the object detection leaderboard of the OOD-CV challenge. Code will be released in https://github.com/hikvision-research/OOD-CV.


翻译:OOD-CV 挑战是一个超出分布范围的一般性任务。 为了解决物体探测轨道上的这个问题, 我们提议了一个简单而有效的通用- 现成- 适应( G&A) 框架( G&A) 框架, 由两阶段域通用部分和一阶段域适应部分组成。 域通用部分由监督示范培训阶段实施, 使用模型热度源数据和弱半半超模示范培训阶段, 使用带有箱级标签的源数据, 以及带有图像级标签的辅助数据( ImageNet-1K ), 增强性能。 域适应部分作为无源域适应范例实施, 仅使用预先培训的模式和无标签的目标数据, 以自我监督的培训方式进一步优化。 拟议的 G&A 框架帮助我们在OD- CV 挑战的物体探测领导板上取得第一位位置。 代码将在 https://github.com/ hikvision- reearch/ OOD- CV 中发布。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月5日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员