Many defenses have recently been proposed at venues like NIPS, ICML, ICLR and CVPR. These defenses are mainly focused on mitigating white-box attacks. They do not properly examine black-box attacks. In this paper, we expand upon the analysis of these defenses to include adaptive black-box adversaries. Our evaluation is done on nine defenses including Barrage of Random Transforms, ComDefend, Ensemble Diversity, Feature Distillation, The Odds are Odd, Error Correcting Codes, Distribution Classifier Defense, K-Winner Take All and Buffer Zones. Our investigation is done using two black-box adversarial models and six widely studied adversarial attacks for CIFAR-10 and Fashion-MNIST datasets. Our analyses show most recent defenses (7 out of 9) provide only marginal improvements in security ($<25\%$), as compared to undefended networks. For every defense, we also show the relationship between the amount of data the adversary has at their disposal, and the effectiveness of adaptive black-box attacks. Overall, our results paint a clear picture: defenses need both thorough white-box and black-box analyses to be considered secure. We provide this large scale study and analyses to motivate the field to move towards the development of more robust black-box defenses.
翻译:最近,在NIPS、ICML、ICML、ICLR和CVPR等场所提出了许多防御建议。 这些防御主要侧重于减少白箱攻击。 它们没有适当地检查黑箱攻击。 在本文中, 我们扩大对这些防御的分析, 以包括适应性黑箱对手。 我们的评估针对的是九种防御, 包括随机变换、 ComDefend、 组合多样性、 特质蒸馏、 奇数、 错误校正代码、 分配分类防御、 K- Winner Take All 和 Buffer Zones。 我们的调查是以两种黑箱对抗模式和六种广泛研究的对称攻击来完成的。 我们的分析显示, 最近对黑箱- 10 和 Fashon- MINIST 数据集的防御分析显示, 最新的防御( 9 中 7 ) 仅略微改善了安全性( $< 25 ⁇ $ ), 与无防御网络相比, 。 对于每一种防御, 我们还显示了敌人处置的数据数量和适应性黑箱攻击的效果之间的关系。 。 总体而言, 我们的结果描绘了一个清晰的蓝图: 需要进行更彻底的防御分析, 向安全的黑箱 向安全箱的实地分析。