Bayesian Optimization is a very effective tool for optimizing expensive black-box functions. Inspired by applications developing and characterizing reaction chemistry using droplet microfluidic reactors, we consider a novel setting where the expense of evaluating the function can increase significantly when making large input changes between iterations. We further assume we are working asynchronously, meaning we have to select new queries before evaluating previous experiments. This paper investigates the problem and introduces 'Sequential Bayesian Optimization via Adaptive Connecting Samples' (SnAKe), which provides a solution by considering large batches of queries and preemptively building optimization paths that minimize input costs. We investigate some convergence properties and empirically show that the algorithm is able to achieve regret similar to classical Bayesian Optimization algorithms in both synchronous and asynchronous settings, while reducing input costs significantly. We show the method is robust to the choice of its single hyper-parameter and provide a parameter-free alternative.
翻译:优化 Bayesian 优化是优化昂贵黑盒功能的一个非常有效的工具。 在应用软件的启发下, 利用液滴微氟化物反应堆开发和定性反应化学, 我们考虑一种新的环境, 在这种环境中, 在迭代之间进行大量输入变化时, 评估功能的成本会大幅增加。 我们还假设我们的工作是无节制的, 也就是说在评估先前的实验之前我们必须选择新的查询。 本文调查了问题, 并引入了“ 通过适应连接样本( SnAKe) 的连续Bayesian优化 ” ( SnAKe), 通过考虑大量查询和先发制人地构建优化路径, 最大限度地降低输入成本, 提供了解决方案。 我们调查了一些趋同特性, 并用经验显示算法能够在同步和不同步的环境中实现典型的古典Bayesian Opim化算法类似的遗憾, 同时大幅降低输入成本。 我们展示了该方法对于选择单一的超参数非常有力, 并提供无参数的替代方法 。