Machine-learning potentials are usually trained on the ground-state, Born-Oppenheimer energy surface, which depends exclusively on the atomic positions and not on the simulation temperature. This disregards the effect of thermally-excited electrons, that is important in metals, and essential to the description of warm dense matter. An accurate physical description of these effects requires that the nuclei move on a temperature-dependent electronic free energy. We propose a method to obtain machine-learning predictions of this free energy at an arbitrary electron temperature using exclusively training data from ground-state calculations, avoiding the need to train temperature-dependent potentials. We benchmark our method on metallic liquid hydrogen at the conditions of the core of gas giants and brown dwarfs.
翻译:机械学习潜力通常在地面状态、Born-Oppenheimer能源表面接受培训,这完全取决于原子位置,而不是模拟温度。这忽略了热刺激电子的影响,这在金属中很重要,对于描述热稠密物质至关重要。准确的物理描述这些影响要求核在依赖温度的电子自由能源上移动。我们提出了一个方法,在任意电子温度下获得这种自由能源的机器学习预测,使用完全来自地面状态计算的培训数据,避免培训依赖温度的潜力。我们用气体巨人和棕矮人的核心条件来衡量我们使用金属液态氢的方法。