Voxelized vector field data consists of a vector field over a high dimensional lattice. The lattice consists of integer coordinates called voxels. The voxelized vector field assigns a vector at each voxel. This data type encompasses images, tensors, and voxel data. Assume there is a nice energy function on the vector field. We consider the problem of lossy compression of voxelized vector field data in Shannon's rate-distortion framework. This means the data is compressed and then decompressed up to an error bound on the energy distortion at each voxel. Our first result is that under general conditions, lossy compression of voxelized vector fields is undecidable to compute. This is caused by having an infinite number of Euclidean vectors. We formulate this problem instead in terms of clustering the finite number of indices of a voxelized vector field by boxes. We call this problem the $(k,D)$-RectLossyVVFCompression problem. We show four main results about the $(k,D)$-RectLossyVVFCompression problem. The first is that it is decidable. The second is that decompression for this problem is polynomial time tractable. This means that the only obstruction to a tractable solution of the $(k,D)$-RectLossyVVFCompression problem lies in the compression stage. This is shown by the two hardness results about the compression stage. We show that the compression stage is NP-Hard to compute exactly and that it is even APX-Hard to approximate for $k,D\geq 2$. Assuming $P\neq NP$, this shows that when $k,D \geq 2$ there can be no exact polynomial time algorithm nor can there even be a PTAS approximation algorithm for the $(k,D)$-RectLossyVVFCompression problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员