Formal query building is an important part of complex question answering over knowledge bases. It aims to build correct executable queries for questions. Recent methods try to rank candidate queries generated by a state-transition strategy. However, this candidate generation strategy ignores the structure of queries, resulting in a considerable number of noisy queries. In this paper, we propose a new formal query building approach that consists of two stages. In the first stage, we predict the query structure of the question and leverage the structure to constrain the generation of the candidate queries. We propose a novel graph generation framework to handle the structure prediction task and design an encoder-decoder model to predict the argument of the predetermined operation in each generative step. In the second stage, we follow the previous methods to rank the candidate queries. The experimental results show that our formal query building approach outperforms existing methods on complex questions while staying competitive on simple questions.
翻译:正式查询建设是回答知识基础的复杂问题的一个重要部分。 它旨在建立正确的可执行的问题查询。 最近的方法试图根据国家过渡战略对候选人的查询进行排序。 但是,这种候选人生成战略忽略了查询结构,导致大量吵闹查询。 在本文中,我们提议了一个新的正式查询建设方法,由两个阶段组成。 在第一阶段, 我们预测问题的查询结构, 并利用结构来限制候选人查询的生成。 我们提议了一个新的图表生成框架, 以处理结构预测任务, 并设计一个编码器- 解码器模型, 以预测每个基因化步骤中预定操作的参数。 在第二阶段, 我们遵循先前的方法来对候选人的查询进行排序。 实验结果显示,我们的正式查询建设方法超越了在复杂问题上的现有方法,同时对简单的问题保持竞争力。