Fog computing is a promising computing paradigm for time-sensitive Internet of Things (IoT) applications. It helps to process data close to the users, in order to deliver faster processing outcomes than the Cloud; it also helps to reduce network traffic. The computation environment in the Fog computing is highly dynamic and most of the Fog devices are battery powered hence the chances of application failure is high which leads to delaying the application outcome. On the other hand, if we rerun the application in other devices after the failure it will not comply with time-sensitiveness. To solve this problem, we need to run applications in an energy-efficient manner which is a challenging task due to the dynamic nature of Fog computing environment. It is required to schedule application in such a way that the application should not fail due to the unavailability of energy. In this paper, we propose a multiple linear, regression-based resource allocation mechanism to run applications in an energy-aware manner in the Fog computing environment to minimise failures due to energy constraint. Prior works lack of energy-aware application execution considering dynamism of Fog environment. Hence, we propose A multiple linear regression-based approach which can achieve such objectives. We present a sustainable energy-aware framework and algorithm which execute applications in Fog environment in an energy-aware manner. The trade-off between energy-efficient allocation and application execution time has been investigated and shown to have a minimum negative impact on the system for energy-aware allocation. We compared our proposed method with existing approaches. Our proposed approach minimises the delay and processing by 20%, and 17% compared with the existing one. Furthermore, SLA violation decrease by 57% for the proposed energy-aware allocation.


翻译:雾计算是具有时间敏感性的事物互联网(IoT)应用程序的一个有希望的计算模式。它有助于处理与用户接近的数据,以便提供比云计算环境更快的处理结果;它也有助于减少网络流量。雾计算中的计算环境非常动态,大多数雾装置都是电池,因此应用失败的可能性很大,从而导致应用结果的延迟。另一方面,如果我们在失败后在其它装置中重新运行应用程序,它将不符合时间敏感性。为了解决这个问题,我们需要以与用户接近的方式运行数据,这对用户来说是一项具有挑战性的任务,因为雾计算环境具有动态性,它也有助于降低网络流量。它需要以这种方式安排应用程序,使应用不会因能源的缺乏而失败。在本文中,我们建议采用一个多线性、基于回归的资源分配机制,在Fog计算环境中以能源意识的方式运行应用,以尽量减少由于能源制约造成的负值失败。我们先前的工作缺乏能源意识应用方法,而考虑到雾环境的活力。因此,我们建议采用一个基于线性回归法的办法来进行能源分配。我们目前的能源分配框架是执行一种可持续的能源分配。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员