Simulations of complex-valued Hopfield networks based on spin-torque oscillators can recover phase-encoded images. Sequences of memristor-augmented inverters provide tunable delay elements that implement complex weights by phase shifting the oscillatory output of the oscillators. Pseudo-inverse training suffices to store at least 12 images in a set of 192 oscillators, representing 16$\times$12 pixel images. The energy required to recover an image depends on the desired error level. For the oscillators and circuitry considered here, 5 % root mean square deviations from the ideal image require approximately 5 $\mu$s and consume roughly 130 nJ. Simulations show that the network functions well when the resonant frequency of the oscillators can be tuned to have a fractional spread less than $10^{-3}$, depending on the strength of the feedback.
翻译:以旋形振荡器为基础的复杂价值的Hopfield 网络模拟模拟器可以回收相编码图像。 介质悬浮变换器的序列提供了可缓冲元素,通过相移振动器的悬浮输出量来实施复杂重量。 超多反向培训足以将至少12张图像储存在一套192个振动器中, 代表16美元\times 12 像素图像。 恢复图像所需的能量取决于理想的误差水平。 对于此处考虑的振动器和电路, 5% 根正方形与理想图像的偏差大约需要5 美元\ mu$, 耗用约130 nJ 。 模拟显示网络功能良好, 当振动器的共振动频率可以调整为小于 10 3 美元, 取决于反馈的强度 。