Much of modern learning theory has been split between two regimes: the classical \emph{offline} setting, where data arrive independently, and the \emph{online} setting, where data arrive adversarially. While the former model is often both computationally and statistically tractable, the latter requires no distributional assumptions. In an attempt to achieve the best of both worlds, previous work proposed the smooth online setting where each sample is drawn from an adversarially chosen distribution, which is smooth, i.e., it has a bounded density with respect to a fixed dominating measure. We provide tight bounds on the minimax regret of learning a nonparametric function class, with nearly optimal dependence on both the horizon and smoothness parameters. Furthermore, we provide the first oracle-efficient, no-regret algorithms in this setting. In particular, we propose an oracle-efficient improper algorithm whose regret achieves optimal dependence on the horizon and a proper algorithm requiring only a single oracle call per round whose regret has the optimal horizon dependence in the classification setting and is sublinear in general. Both algorithms have exponentially worse dependence on the smoothness parameter of the adversary than the minimax rate. We then prove a lower bound on the oracle complexity of any proper learning algorithm, which matches the oracle-efficient upper bounds up to a polynomial factor, thus demonstrating the existence of a statistical-computational gap in smooth online learning. Finally, we apply our results to the contextual bandit setting to show that if a function class is learnable in the classical setting, then there is an oracle-efficient, no-regret algorithm for contextual bandits in the case that contexts arrive in a smooth manner.


翻译:现代学习理论的许多内容在两个制度之间被分化了: 数据独立到达的古典 \ emph{ offline} 设置, 以及数据对抗到达的 \ emph{ online} 设置。 虽然前一种模式通常在计算上和统计上都是可移动的, 但后者不需要任何分布式的假设。 为了实现两个世界的最好结果, 先前的工作建议了平滑的在线设置, 每一个样本都是从对称选择的分布中提取的, 这是平滑的, 也就是说, 它在固定的主宰测量度上具有一个约束性的密度。 我们为学习一个非对等功能类的微缩缩缩微末级遗憾提供了紧凑的界限。 此外, 我们提供了第一个模式是计算效率的, 而不是统计上等值的计算法。 而在我们这个结构中, 最差的排序法是, 最差的缩略缩缩缩缩缩缩缩的缩略图是, 最终的缩略微缩缩略图是学习的缩缩缩缩缩缩的缩缩缩缩缩图。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2020年12月17日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员