We prove three switching lemmas, for random restrictions for which variables are set independently; for random restrictions where variables are set in blocks (both due to Hastad [Hastad 86]); and for a distribution appropriate for the bijective pigeonhole principle [Beame et al. 94, Krajicek et al. 95]. The proofs are based on Beame's version [Beame 94] of Razborov's proof of the switching lemma in [Razborov 93], except using families of weighted restrictions rather than families of restrictions which are all the same size. This follows a suggestion of Beame in [Beame 94]. The result is something between Hastad's and Razborov's methods of proof. We use probabilistic arguments rather than counting ones, in a similar way to Hastad, but rather than doing induction on the terms in our formula with an inductive hypothesis involving conditional probability, as Hastad does, we explicitly build one function to bound the probabilities for the whole formula.


翻译:我们证明,有三个变数是独立的随机限制,有三个变数是独立的变数;一个变数是按区块设置的变数的随机限制(因为哈斯塔德[哈斯塔德(Hastad 86]);一个适合双向鸽子洞原则[Beame等人,94,Krajicek等人,95]的分布。这些证明以拉兹博罗夫(Razborov 93)关于变数的变数的比阿梅[Beame 的版本[Beame 94]为依据,但使用加权限制家庭而不是相同大小的限制家庭除外。这符合Beame [Beame 94]的建议。结果发生在哈斯塔德和Razborov的举证方法之间。我们用类似方式使用概率论而不是计数参数,而不是像哈斯塔德(Haztad)所做的那样,用附附设条件概率的假设,而不是用我们公式中的诱导词来诱导,我们明确建立一种功能来约束整个公式的概率。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月20日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员