In a recent breakthrough paper, Chi et al. (STOC'22) introduce an $\tilde{O}(n^{\frac{3 + \omega}{2}})$ time algorithm to compute Monotone Min-Plus Product between two square matrices of dimensions $n \times n$ and entries bounded by $O(n)$. This greatly improves upon the previous $\tilde O(n^{\frac{12 + \omega}{5}})$ time algorithm and as a consequence improves bounds for its applications. Several other applications involve Monotone Min-Plus Product between rectangular matrices, and even if Chi et al.'s algorithm seems applicable for the rectangular case, the generalization is not straightforward. In this paper we present a generalization of the algorithm of Chi et al. to solve Monotone Min-Plus Product for rectangular matrices with polynomial bounded values. We next use this faster algorithm to improve running times for the following applications of Rectangular Monotone Min-Plus Product: $M$-bounded Single Source Replacement Path, Batch Range Mode, $k$-Dyck Edit Distance and 2-approximation of All Pairs Shortest Path. We also improve the running time for Unweighted Tree Edit Distance using the algorithm by Chi et al.
翻译:Chi et al. (STOC' 22) 在最近一份突破性论文中, Chi et al. (STOC' 22) 引入了 $\ tilde{O} (n\ frac{ 3+\ omega}2 ⁇ ) 时间算法, 在两个维度的平方基体之间, $\ timen n$ 美元, 和 $O( n) 受 美元约束的条目之间, 计算 Mintone Min- Plus 产值。 这大大改进了前一个 $(n\ frac{ 12+\ omega}) 的时间算法, 从而改进了它的应用范围 。 其他几个应用程序包括矩形矩形 Mintone Min- Plus 产品, 即使 Chi et al. 等 的算法似乎适用于矩形三角体的立方体矩阵, 也不简单化 。 在本文中, 我们介绍对 Chi et al 等 的算法进行了概括化, 用于 矩形矩形矩形矩形矩阵的矩形矩阵 和 方向的升级。