Massive connectivity for extra-large multi-input multi-output (XL-MIMO) systems is a challenging issue due to the prohibitive cost and the near-field non-stationary channels. In this paper, we propose an uplink grant-free massive access scheme for XL-MIMO systems, in which a mixed-analog-to-digital converters (ADC) architecture is adopted to strike the right balance between access performance and energy cost. By exploiting the spatial-domain structured sparsity and the piecewise angular-domain cluster sparsity of massive access channels, a compressive sensing (CS)-based two-stage orthogonal approximate message passing algorithm is proposed to efficiently solve the joint activity detection and channel estimation problem. Particularly, high-precision quantized measurements are leveraged to perform accurate hyper-parameter estimation, thereby facilitating the activity detection. Moreover, we adopt subarray-wise estimation strategy to overcome the severe angular-domain energy dispersion problem which is caused by the spatial non-stationarity of near-field XL-MIMO channels. Simulation results verify the superiority of our proposed algorithm over state-of-the-art CS algorithms for massive access based on XL-MIMO with mixed-ADC architectures.
翻译:超大型多投入多输出(XL-MIMO)系统的大规模连通性是一个具有挑战性的问题,原因是成本高得令人望而却步,而且存在近地非静止通道。本文建议为XL-MIIMO系统制定一个无赠款大规模连通的上限计划,在其中采用一个混合式对数转换器(ADC)结构架构,以在接入性能和能源成本之间达成正确的平衡。我们利用空间-多面结构结构的宽度,以及大规模接入通道的方形角-多面聚散射,采用压缩遥感(CS)基础的两阶段或深层次近似电文传递算法,以有效解决联合活动探测和频道估算问题。特别是,利用高精度四分解测量测量法进行准确的超分数估计,从而便利活动探测。此外,我们采用了次轨估算战略,以克服由于近地XL-IMIM-M频道空间非静止状态性造成的重角能量扩散问题。在XL-MIM-MAR-C-C-C-CAS-M-CARM-CS-C-Simla-C-MAL-CAS-C-CAS-CLML-C-CL-ML-CL-CL-CLMLMLMLMOL-C-SALMAL-C-C-C-S-S-S-C-C-C-M-M-M-C-C-M-ML-ML-ML-ML-CL-ML 的大规模混合算算算算算算算法的模型上大规模结构结构结构结构上的大型结构上的大型结构上的大型结构结构结构结构上的大型结构结构结构结构结构结构上的高度。