The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great importance. We propose a novel orthogonal over-parameterized training (OPT) framework that can provably minimize the hyperspherical energy which characterizes the diversity of neurons on a hypersphere. By maintaining the minimum hyperspherical energy during training, OPT can greatly improve the network generalization. Specifically, OPT fixes the randomly initialized weights of the neurons and learns an orthogonal transformation that applies to these neurons. We propose multiple ways to learn such an orthogonal transformation, including unrolling orthogonalization algorithms, applying orthogonal parameterization, and designing orthogonality-preserving gradient descent. Interestingly, OPT reveals that learning a proper coordinate system for neurons is crucial to generalization and may be more important than learning specific relative positions among neurons. We provide some insights on why OPT yields better generalization. Extensive experiments validate the superiority of OPT.


翻译:神经网络的感知偏差在很大程度上由结构与培训算法决定。 为了实现良好的概括化, 如何有效地培训神经网络非常重要。 我们提出一个新的正统超分度培训框架, 它可以将超视球能量最小化, 即高视线神经多样性的特点。 通过在训练期间保持最低限度的超球能量, 巴勒斯坦被占领土可以大大改进网络的概括化。 具体地说, 巴勒斯坦被占领土可以修正神经元的随机初始重量, 并学习适用于这些神经元的正方形变异。 我们提出多种方法来学习这种正正方形变异, 包括不滚动或正方形变异算法, 应用正方形参数化法, 设计正方形梯度梯度下降。 有趣的是, 巴勒斯坦被占领土通过在训练中保持神经元的适当协调系统对于概括化至关重要, 并且可能比学习神经元之间特定相对位置更重要。 我们提供了一些关于为什么ALM产生更好的概括化的见解。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年11月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年11月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员