We study sublinear and local computation algorithms for decision trees, focusing on testing and reconstruction. Our first result is a tester that runs in $\mathrm{poly}(\log s, 1/\varepsilon)\cdot n\log n$ time, makes $\mathrm{poly}(\log s,1/\varepsilon)\cdot \log n$ queries to an unknown function $f$, and: $\circ$ Accepts if $f$ is $\varepsilon$-close to a size-$s$ decision tree; $\circ$ Rejects if $f$ is $\Omega(\varepsilon)$-far from decision trees of size $s^{\tilde{O}((\log s)^2/\varepsilon^2)}$. Existing testers distinguish size-$s$ decision trees from those that are $\varepsilon$-far from from size-$s$ decision trees in $\mathrm{poly}(s^s,1/\varepsilon)\cdot n$ time with $\tilde{O}(s/\varepsilon)$ queries. We therefore solve an incomparable problem, but achieve doubly-exponential-in-$s$ and exponential-in-$s$ improvements in time and query complexities respectively. We obtain our tester by designing a reconstruction algorithm for decision trees: given query access to a function $f$ that is close to a small decision tree, this algorithm provides fast query access to a small decision tree that is close to $f$. By known relationships, our results yield reconstruction algorithms for numerous other boolean function properties -- Fourier degree, randomized and quantum query complexities, certificate complexity, sensitivity, etc. -- which in turn yield new testers for these properties. Finally, we give a hardness result for testing whether an unknown function is $\varepsilon$-close-to or $\Omega(\varepsilon)$-far-from size-$s$ decision trees. We show that an efficient algorithm for this task would yield an efficient algorithm for properly learning decision trees, a central open problem of learning theory. It has long been known that proper learning algorithms for any class $\mathcal{H}$ yield property testers for $\mathcal{H}$; this provides an example of a converse.


翻译:我们研究决策树的亚线性和本地计算算法, 重点是测试和重建。 我们的第一个结果是一个测试器, 运行在$\ mathrm{poly}( logs, 1/\ varepsilon)\ cdolg n\ log n$美元时间, 使$\ mathrm{poly}( logs, 1/\ varepsilon)\cd\log n美元查询一个未知的函数 $, 并且: 如果美元是美元, 美元, 则接受美元, 以美元, 以美元, 以美元, 以美元, 以美元, 以美元, 美元, 美元, 美元, 以美元, 美元, 美元, 美元, 美元, 以美元, 以美元, 美元, 以美元, 美元, 以美元, 以美元, 美元, 以美元, 以美元, 以美元。

0
下载
关闭预览

相关内容

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
51+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
【电子书】C++ Primer Plus 第6版,附PDF
专知会员服务
88+阅读 · 2019年11月25日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年2月16日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员