For certain infinitely-wide neural networks, the neural tangent kernel (NTK) theory fully characterizes generalization, but for the networks used in practice, the empirical NTK only provides a rough first-order approximation. Still, a growing body of work keeps leveraging this approximation to successfully analyze important deep learning phenomena and design algorithms for new applications. In our work, we provide strong empirical evidence to determine the practical validity of such approximation by conducting a systematic comparison of the behavior of different neural networks and their linear approximations on different tasks. We show that the linear approximations can indeed rank the learning complexity of certain tasks for neural networks, even when they achieve very different performances. However, in contrast to what was previously reported, we discover that neural networks do not always perform better than their kernel approximations, and reveal that the performance gap heavily depends on architecture, dataset size and training task. We discover that networks overfit to these tasks mostly due to the evolution of their kernel during training, thus, revealing a new type of implicit bias.


翻译:对于某些无限宽度的神经网络来说,神经相切内核(NTK)理论充分体现了一般化的特点,但对于实际使用的网络来说,经验性NTK只提供了粗略的第一阶近似值。不过,越来越多的工作不断利用这一近似值来成功分析重要的深层学习现象和设计新应用的算法。在我们的工作中,我们提供了强有力的经验证据,通过对不同神经网络的行为及其对不同任务的线性近似值进行系统比较来确定这种近似的实际有效性。我们表明线性近似确实可以将神经网络的某些任务的学习复杂性排序,即使它们达到非常不同的性能。然而,与以前报告的情况相反,我们发现神经网络的表现并不总是比它们的内核近似值更好,并揭示性差在很大程度上取决于结构、数据集大小和培训任务。我们发现网络与这些任务相比,主要由于在训练期间内核的演变,因此暴露了一种新的隐含的偏差。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年5月13日
Arxiv
9+阅读 · 2020年2月15日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
7+阅读 · 2021年5月13日
Arxiv
9+阅读 · 2020年2月15日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
23+阅读 · 2018年10月1日
Top
微信扫码咨询专知VIP会员