Recently, the increasing availability of repeated measurements in biomedical studies has motivated the development of several statistical methods for the dynamic prediction of survival in settings where a large (potentially high-dimensional) number of longitudinal covariates is available. These methods differ in both how they model the longitudinal covariates trajectories, and how they specify the relationship between the longitudinal covariates and the survival outcome. Because these methods are still quite new, little is known about their applicability, limitations and performance when applied to real-world data. To investigate these questions, we present a comparison of the predictive performance of the aforementioned methods and two simpler prediction approaches to three datasets that differ in terms of outcome type, sample size, number of longitudinal covariates and length of follow-up. We discuss how different modelling choices can have an impact on the possibility to accommodate unbalanced study designs and on computing time, and compare the predictive performance of the different approaches using a range of performance measures and landmark times.
翻译:暂无翻译