Automated classification of animal sounds is a prerequisite for large-scale monitoring of biodiversity. Convolutional Neural Networks (CNNs) are among the most promising algorithms but they are slow, often achieve poor classification in the field and typically require large training data sets. Our objective was to design CNNs that are fast at inference time and achieve good classification performance while learning from moderate-sized data. Recordings from a rainforest ecosystem were used. Start and end-point of sounds from 20 bird species were manually annotated. Spectrograms from 10 second segments were used as CNN input. We designed simple CNNs with a frequency unwrapping layer (SIMP-FU models) such that any output unit was connected to all spectrogram frequencies but only to a sub-region of time, the Receptive Field (RF). Our models allowed experimentation with different RF durations. Models either used the time-indexed labels that encode start and end-point of sounds or simpler segment-level labels. Models learning from time-indexed labels performed considerably better than their segment-level counterparts. Best classification performances was achieved for models with intermediate RF duration of 1.5 seconds. The best SIMP-FU models achieved AUCs over 0.95 in 18 of 20 classes on the test set. On compact low-cost hardware the best SIMP-FU models evaluated up to seven times faster than real-time data acquisition. RF duration was a major driver of classification performance. The optimum of 1.5 s was in the same range as the duration of the sounds. Our models achieved good classification performance while learning from moderate-sized training data. This is explained by the usage of time-indexed labels during training and adequately sized RF. Results confirm the feasibility of deploying small CNNs with good classification performance on compact low-cost devices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【AAAI2022】面向多标签分类的端到端概率标签特征学习
专知会员服务
30+阅读 · 2022年1月27日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
145+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员