The cost efficiency of model inference is critical to real-world machine learning (ML) applications, especially for delay-sensitive tasks and resource-limited devices. A typical dilemma is: in order to provide complex intelligent services (e.g. smart city), we need inference results of multiple ML models, but the cost budget (e.g. GPU memory) is not enough to run all of them. In this work, we study underlying relationships among black-box ML models and propose a novel learning task: model linking, which aims to bridge the knowledge of different black-box models by learning mappings (dubbed model links) between their output spaces. We propose the design of model links which supports linking heterogeneous black-box ML models. Also, in order to address the distribution discrepancy challenge, we present adaptation and aggregation methods of model links. Based on our proposed model links, we developed a scheduling algorithm, named MLink. Through collaborative multi-model inference enabled by model links, MLink can improve the accuracy of obtained inference results under the cost budget. We evaluated MLink on a multi-modal dataset with seven different ML models and two real-world video analytics systems with six ML models and 3,264 hours of video. Experimental results show that our proposed model links can be effectively built among various black-box models. Under the budget of GPU memory, MLink can save 66.7% inference computations while preserving 94% inference accuracy, which outperforms multi-task learning, deep reinforcement learning-based scheduler and frame filtering baselines.
翻译:模型推断的成本效率对于真实世界机器学习(ML)应用程序至关重要。 模型推断的成本效率对于真实世界机器学习(ML)应用至关重要, 特别是对于延迟敏感的任务和资源有限的设备。 一个典型的两难境地是: 为了提供复杂的智能服务(例如智能城市), 我们需要多个ML模型的推断结果, 但是成本预算( 如GPU记忆) 不足以运行所有这些模型。 在这项工作中, 我们研究黑箱 ML 模型之间的关系, 并提出一个新的学习任务: 模型连接, 目的是通过在输出空间之间学习绘图( 深盘模型链接) 弥合不同黑箱模型的知识。 我们建议设计模型链接, 支持将混杂的黑盒 ML 模型模型连接起来。 此外, 为了应对分布差异挑战, 我们提出模型链接的调整和汇总方法。 根据我们提议的模型链接, 我们开发了一个名为 MLink 的列表算法。 通过借助模型链接的合作性多模型, MLink 可以在成本预算下改进基于基础的计算结果的计算结果的准确性。 我们评估了多模式的MinkL, 在7 模型下, 和MLL 模拟的模型中, 将真实的计算结果显示一个不同的MllL 。