The fast execution speed and energy efficiency of analog hardware has made them a strong contender for deployment of deep learning model at the edge. However, there are concerns about the presence of analog noise which causes changes to the weight of the models, leading to performance degradation of deep learning model, despite their inherent noise resistant characteristics. The effect of the popular batch normalization layer on the noise resistant ability of deep learning model is investigated in this work. This systematic study has been carried out by first training different models with and without batch normalization layer on CIFAR10 and CIFAR100 dataset. The weights of the resulting models are then injected with analog noise and the performance of the models on the test dataset is obtained and compared. The results show that the presence of batch normalization layer negatively impacts noise resistant property of deep learning model and the impact grows with the increase of the number of batch normalization layers.


翻译:模拟硬件的快速执行速度和能源效率使模拟硬件成为在边缘部署深层学习模型的强大竞争者,然而,令人关切的是,模拟噪音造成模型重量的变化,导致深层学习模型的性能退化,尽管这些模型具有固有的耐噪音特性;在这项工作中调查了流行的批量正常化层对耐噪音的深层学习模型能力的影响;通过在CIFAR10和CIFAR100数据集中首次对不同模型进行有和没有批量正常化层的不同模型的培训,进行了这一系统研究;随后,产生的模型的重量被注入了模拟噪音,并获得和比较了测试数据集模型的性能;结果显示,批量正常化层的存在对深层学习模型的耐噪音特性产生了负面影响,随着分批正常化层数量的增加,影响也随之增加。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年7月5日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员