How neural networks in the human brain represent commonsense knowledge, and complete related reasoning tasks is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence. Although the traditional artificial neural network using fixed-length vectors to represent symbols has gained good performance in some specific tasks, it is still a black box that lacks interpretability, far from how humans perceive the world. Inspired by the grandmother-cell hypothesis in neuroscience, this work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks, and how a population of neurons can represent a symbol via guiding the completion of sequential firing between different neuron populations. The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network. Moreover, we introduced the Reward-modulated spiking timing-dependent plasticity (R-STDP) mechanism to simulate the biological reinforcement learning process and completed the related reasoning tasks accordingly, achieving comparable accuracy and faster convergence speed than the graph convolutional artificial neural networks. For the fields of neuroscience and cognitive science, the work in this paper provided the foundation of computational modeling for further exploration of the way the human brain represents commonsense knowledge. For the field of artificial intelligence, this paper indicated the exploration direction for realizing a more robust and interpretable neural network by constructing a commonsense knowledge representation and reasoning spiking neural networks with solid biological plausibility.
翻译:人类大脑神经网络如何代表常识知识,以及完整的相关推理任务,是神经科学、认知科学、心理学和人工智能的一个重要研究课题。尽管使用固定长矢量代表符号的传统人工神经网络在某些具体任务中取得了良好的表现,但它仍然是一个黑盒,缺乏解释性,远非人类对世界的看法。受神经科学的祖母细胞假设的启发,这项工作调查了如何将人口编码和弹射基于时间的可塑性(STDP)机制纳入神经科学、认知科学、心理学和人工智能网络的学习中,以及神经群体如何通过指导不同神经群体之间连续射击的完成而代表一个象征。不同社区的神经群体共同构成整个常识知识图,形成一个巨型图形振动神经网络。此外,我们引入了由时间调整的根据时间调整的可塑性(R-STDP)机制,以模拟生物强化学习进程,并相应完成相关的推理任务,从而实现可比的准确性和更快的趋同速度,从而指导不同神经群体群体群体群体群体之间连续射击网络的完成。不同的神经网络构成整个常识知识图图图图图图,形成了一个更坚实的模型基础,用以构建了人类探索和大脑的模型基础。