Exposure bias is a well-known issue in recommender systems where items and suppliers are not equally represented in the recommendation results. This is especially problematic when bias is amplified over time as a few items (e.g., popular ones) are repeatedly over-represented in recommendation lists and users' interactions with those items will amplify bias towards those items over time resulting in a feedback loop. This issue has been extensively studied in the literature on model-based or neighborhood-based recommendation algorithms, but less work has been done on online recommendation models, such as those based on top-K contextual bandits, where recommendation models are dynamically updated with ongoing user feedback. In this paper, we study exposure bias in a class of well-known contextual bandit algorithms known as Linear Cascading Bandits. We analyze these algorithms on their ability to handle exposure bias and provide a fair representation for items in the recommendation results. Our analysis reveals that these algorithms tend to amplify exposure disparity among items over time. In particular, we observe that these algorithms do not properly adapt to the feedback provided by the users and frequently recommend certain items even when those items are not selected by users. To mitigate this bias, we propose an Exposure-Aware (EA) reward model that updates the model parameters based on two factors: 1) user feedback (i.e., clicked or not), and 2) position of the item in the recommendation list. This way, the proposed model controls the utility assigned to items based on their exposure in the recommendation list. Extensive experiments on two real-world datasets using three contextual bandit algorithms show that the proposed reward model reduces exposure bias amplification in long run while maintaining the recommendation accuracy.


翻译:在推荐人系统中,项目和供应商在建议结果中没有得到同等代表,接触偏差是一个众所周知的问题,在推荐人系统中,项目和供应商在建议结果中没有得到同等代表,这种偏差在推荐人系统中是一个众所周知的问题。当偏差随着时间而扩大时,特别成问题,因为一些项目(如流行项目)在推荐人名单中代表过多,而用户与这些项目的互动将逐渐扩大对这些项目的偏差,从而导致反馈回路。关于基于模型或以邻居为基础的推荐算法的文献中已经广泛研究过这个问题,但在网上推荐模式中,例如基于上K背景偏差的模型中,建议模型的偏差得到动态更新。在本文中,我们研究一些众所周知的、称为Linear Cascating Bandits 的频段算法类别中的偏差。我们分析这些算法对于这些项目的偏差,最终导致反馈回移。我们用两种方法在用户没有选择的模型时,这些算出风险的偏差率。我们用两种方法来降低风险。我们提议在推荐人列表中,用两种推算的偏差。我们用两种推算的方法在定义的推算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月16日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员