We study a matrix that arises from a singular form of the Woodbury matrix identity. We present generalized inverse and pseudo-determinant identities for this matrix, which have direct applications for Gaussian process regression, specifically its likelihood representation and precision matrix. We extend the definition of the precision matrix to the Bott-Duffin inverse of the covariance matrix, preserving properties related to conditional independence, conditional precision, and marginal precision. We also provide an efficient algorithm and numerical analysis for the presented determinant identities and demonstrate their advantages under specific conditions relevant to computing log-determinant terms in likelihood functions of Gaussian process regression.


翻译:暂无翻译

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月8日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员