This paper proposes a framework for developing forecasting models by streamlining the connections between core components of the developmental process. The proposed framework enables swift and robust integration of new datasets, experimentation on different algorithms, and selection of the best models. We start with the datasets of different issues and apply pre-processing steps to clean and engineer meaningful representations of time-series data. To identify robust training configurations, we introduce a novel mechanism of multiple cross-validation strategies. We apply different evaluation metrics to find the best-suited models for varying applications. One of the referent applications is our participation in the intelligent forecasting competition held by the United States Agency of International Development (USAID). Finally, we leverage the flexibility of the framework by applying different evaluation metrics to assess the performance of the models in inventory management settings.
翻译:本文提出了一种建立预测模型的框架,通过简化开发过程中核心组件之间的连接,实现了新数据集的快速且强大的集成、对不同算法的实验以及最佳模型的选择。我们首先从不同问题的数据集开始,并应用预处理步骤来清理和工程化时间序列数据的有意义表示。为了确定稳健的训练配置,我们引入了一种新颖的多交叉验证策略机制。我们应用不同的评估指标来找到最适合不同应用的模型。其中一个参考应用是我们参与由美国国际开发署(USAID)举办的智能预测比赛。最后,我们利用框架的灵活性,通过应用不同的评估指标来评估模型在库存管理环境中的性能。