We propose a computational approach for recipe ideation, a downstream task that helps users select and gather ingredients for creating dishes. To perform this task, we developed RecipeMind, a food affinity score prediction model that quantifies the suitability of adding an ingredient to set of other ingredients. We constructed a large-scale dataset containing ingredient co-occurrence based scores to train and evaluate RecipeMind on food affinity score prediction. Deployed in recipe ideation, RecipeMind helps the user expand an initial set of ingredients by suggesting additional ingredients. Experiments and qualitative analysis show RecipeMind's potential in fulfilling its assistive role in cuisine domain.
翻译:我们提出了食谱概念的计算方法,这是帮助用户选择和收集制作菜盘的成分的下游任务。为了完成这一任务,我们开发了食谱和亲近性分数预测模型,用以量化添加成份到其他成份组群中的适宜性。我们建造了一个大型数据集,其中包含基于成份的共同得分,以训练和评价食谱的成份预测。在食谱概念中部署,“食谱”帮助用户通过提出附加成份来扩大一套初步成份。实验和定性分析显示“食谱”在烹饪领域发挥辅助作用的潜力。