Arbitrary Style Transfer is a technique used to produce a new image from two images: a content image, and a style image. The newly produced image is unseen and is generated from the algorithm itself. Balancing the structure and style components has been the major challenge that other state-of-the-art algorithms have tried to solve. Despite all the efforts, it's still a major challenge to apply the artistic style that was originally created on top of the structure of the content image while maintaining consistency. In this work, we solved these problems by using a Deep Learning approach using Convolutional Neural Networks. Our implementation will first extract foreground from the background using the pre-trained Detectron 2 model from the content image, and then apply the Arbitrary Style Transfer technique that is used in SANet. Once we have the two styled images, we will stitch the two chunks of images after the process of style transfer for the complete end piece.


翻译:任意样式传输是一种技术, 用来从两种图像中生成新图像: 内容图像和风格图像。 新生成的图像是不可见的, 并且是由算法本身生成的。 平衡结构和样式组件是其他最先进的算法试图解决的主要挑战。 尽管付出了一切努力, 应用最初在内容图像结构上方创造的艺术风格, 并同时保持一致性, 仍然是一个重大挑战 。 在这项工作中, 我们通过使用 Convolutional Nealal Nets 的深学习方法解决这些问题 。 我们的安装将首先从背景中提取背景的视野, 从内容图像中选取预培训的探测器 2 模型, 然后应用在 SANet 中使用的任意样式转换技术 。 一旦我们掌握了两个样式图像, 我们将会在样式传输过程之后将两块图像缝合成完整的末段 。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月19日
Arxiv
0+阅读 · 2023年2月19日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年2月19日
Arxiv
0+阅读 · 2023年2月19日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员