In order to satisfy diverse quality-of-service (QoS) requirements of complex real-time video applications, civilian and tactical use cases are employing software-defined hybrid edge-cloud systems. One of the primary QoS requirements of such applications is ultra-low end-to-end latency for video applications that necessitates rapid frame transfer between end-devices and edge servers using software-defined networking (SDN). Failing to guarantee such strict requirements leads to quality degradation of video applications and subsequently mission failure. In this paper, we show how a collaborative group of attackers can exploit SDN's control communications to launch Denial of Quality of Service (DQoS) attack that artificially increases end-to-end latency of video frames and yet evades detection. In particular, we show how Deep Neural Network (DNN) model training on all or partial network state information can help predict network packet drop rates with reasonable accuracy. We also show how such predictions can help design an attack model that can inflict just the right amount of added latency to the end-to-end video processing that is enough to cause considerable QoS degradation but not too much to raise suspicion. We use a realistic edge-cloud testbed on GENI platform for training data collection and demonstration of high model accuracy and attack success rate.


翻译:为了满足复杂实时视频应用的多样化服务质量(QoS)要求,民用和战术用例采用软件定义的混合边缘云系统。其中一个主要的QoS要求是对于视频应用实现超低的端到端延迟,这需要在使用软件定义网络(SDN)的情况下,端设备和边缘服务器之间的快速帧传输。如果未能满足这种严格的要求,将导致视频应用质量下降,进而导致任务失败。在本文中,我们展示了一个攻击者协作组如何利用SDN的控制通信发起拒绝服务(DQoS)攻击,从而人为地增加了视频帧的端到端延迟,而且躲避了检测。特别是,我们展示了如何利用所有或部分网络状态信息进行深度神经网络(DNN)模型训练,以帮助合理准确地预测网络数据包丢失率。我们还展示了这样的预测如何帮助设计一个攻击模型,可以造成足够的端到端视频处理增加的延迟,从而引起相当大的QoS下降,但不至于过分抬高怀疑。我们使用GENI平台上的实际边缘云测试平台进行训练数据收集,并演示高模型准确性和攻击成功率。

0
下载
关闭预览

相关内容

机器学习相关资源(框架、库、软件)大列表
专知会员服务
38+阅读 · 2019年10月9日
首届图可信学习研讨会 – TrustLOG @ CIKM 2022
图与推荐
0+阅读 · 2022年8月14日
模型攻击:鲁棒性联邦学习研究的最新进展
机器之心
34+阅读 · 2020年6月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
32+阅读 · 2022年2月15日
Arxiv
34+阅读 · 2019年11月7日
VIP会员
相关VIP内容
机器学习相关资源(框架、库、软件)大列表
专知会员服务
38+阅读 · 2019年10月9日
相关资讯
首届图可信学习研讨会 – TrustLOG @ CIKM 2022
图与推荐
0+阅读 · 2022年8月14日
模型攻击:鲁棒性联邦学习研究的最新进展
机器之心
34+阅读 · 2020年6月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员