Despite advances in neural machine translation (NMT) quality, rare words continue to be problematic. For humans, the solution to the rare-word problem has long been dictionaries, but dictionaries cannot be straightforwardly incorporated into NMT. In this paper, we describe a new method for "attaching" dictionary definitions to rare words so that the network can learn the best way to use them. We demonstrate improvements of up to 1.8 BLEU using bilingual dictionaries.
翻译:尽管神经机翻译(NMT)质量有所进步,但稀有的字眼仍然是个问题。 对于人类来说,稀有字眼问题的解决方案早就是词典,但词典不能直接纳入NMT。 在本文中,我们描述了一种“将字典定义与稀有字眼相匹配的新方法,这样网络才能学习最佳的使用方法。 我们用双语词典展示了多达1.8 BLEU的改进。