We study a social learning model in which agents iteratively update their beliefs about the true state of the world using private signals and the beliefs of other agents in a non-Bayesian manner. Some agents are stubborn, meaning they attempt to convince others of an erroneous true state (modeling fake news). We show that while agents learn the true state on short timescales, they "forget" it and believe the erroneous state to be true on longer timescales. Using these results, we devise strategies for seeding stubborn agents so as to disrupt learning, which outperform intuitive heuristics and give novel insights regarding vulnerabilities in social learning.
翻译:我们研究一种社会学习模式,在这种模式中,代理商用非巴伊西亚方式利用私人信号和其他代理商的信仰反复更新他们对世界真实状况的信仰。 一些代理商顽固不化,试图说服他人相信错误的真实状态(仿造假新闻 ) 。 我们显示,尽管代理商在短时间尺度上学习真实状态,但他们“忘记”了真实状态,并且相信在更长的时间尺度上错误状态是真实的。 利用这些结果,我们设计了种子固执的代理商的战略,以破坏学习,而学习表现超乎直观的超常,并对社会学习中的弱点提出了新的洞察力。