Proxemics is a branch of non-verbal communication concerned with studying the spatial behavior of people and animals. This behavior is an essential part of the communication process due to delimit the acceptable distance to interact with another being. With increasing research on human-agent interaction, new alternatives are needed that allow optimal communication, avoiding agents feeling uncomfortable. Several works consider proxemic behavior with cognitive agents, where human-robot interaction techniques and machine learning are implemented. However, environments consider fixed personal space and that the agent previously knows it. In this work, we aim to study how agents behave in environments based on proxemic behavior, and propose a modified gridworld to that aim. This environment considers an issuer with proxemic behavior that provides a disagreement signal to the agent. Our results show that the learning agent can identify the proxemic space when the issuer gives feedback about agent performance.
翻译:蛋白质是研究人和动物空间行为的非语言交流的分支。 该行为是沟通过程的一个基本部分, 因为它可以划定可接受的距离, 以便与另一个人进行互动。 随着对人体剂互动的研究的增加, 需要新的替代方法, 以便进行最佳交流, 避免代理人感到不舒服。 一些人的工作考虑与认知剂的繁殖行为, 在那里使用人体- 机器人互动技术和机器学习。 但是, 环境考虑固定的个人空间, 并且代理器以前知道这一点。 在这项工作中, 我们的目标是研究代理器在基于繁殖行为的环境中的行为方式, 并为此目的提出一个修改的网格世界。 这个环境会考虑一个向代理器提供不同意见信号的子细胞行为发行者。 我们的结果表明, 当发行者对代理器的性能进行反馈时, 学习代理器可以识别 proxemic 空间 。