While Moore's law has driven exponential computing power expectations, its nearing end calls for new avenues for improving the overall system performance. One of these avenues is the exploration of alternative brain-inspired computing architectures that aim at achieving the flexibility and computational efficiency of biological neural processing systems. Within this context, neuromorphic engineering represents a paradigm shift in computing based on the implementation of spiking neural network architectures in which processing and memory are tightly co-located. In this paper, we provide a comprehensive overview of the field, highlighting the different levels of granularity at which this paradigm shift is realized and comparing design approaches that focus on replicating natural intelligence (bottom-up) versus those that aim at solving practical artificial intelligence applications (top-down). First, we present the analog, mixed-signal and digital circuit design styles, identifying the boundary between processing and memory through time multiplexing, in-memory computation, and novel devices. Then, we highlight the key tradeoffs for each of the bottom-up and top-down design approaches, survey their silicon implementations, and carry out detailed comparative analyses to extract design guidelines. Finally, we identify necessary synergies and missing elements required to achieve a competitive advantage for neuromorphic systems over conventional machine-learning accelerators in edge computing applications, and outline the key ingredients for a framework toward neuromorphic intelligence.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年8月16日
Arxiv
31+阅读 · 2022年2月15日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员