The reason behind CNNs capability to learn high-dimensional complex features from the images is the non-linearity introduced by the activation function. Several advanced activation functions have been discovered to improve the training process of neural networks, as choosing an activation function is a crucial step in the modeling. Recent research has proposed using an oscillating activation function to solve classification problems inspired by the human brain cortex. This paper explores the performance of one of the CNN architecture ALexNet on MNIST and CIFAR10 datasets using oscillatory activation function (GCU) and some other commonly used activation functions like ReLu, PReLu, and Mish.
翻译:CNN能够从图像中学习高维复杂特征的原因是,激活功能引入了非线性功能。发现了一些先进的激活功能来改进神经网络的培训过程,因为选择激活功能是模型制作中的一个关键步骤。最近的研究提议使用振动激活功能来解决人类大脑皮层引发的分类问题。本文探讨了CNN关于MNIST的ALexNet 和 CIFAR10 数据集的一个CNN 架构的性能,该架构使用血管激活功能(GCU)和一些其他常用的激活功能,如ReLu、PReLu和Mish。