For industrial-scale advertising systems, prediction of ad click-through rate (CTR) is a central problem. Ad clicks constitute a significant class of user engagements and are often used as the primary signal for the usefulness of ads to users. Additionally, in cost-per-click advertising systems where advertisers are charged per click, click rate expectations feed directly into value estimation. Accordingly, CTR model development is a significant investment for most Internet advertising companies. Engineering for such problems requires many machine learning (ML) techniques suited to online learning that go well beyond traditional accuracy improvements, especially concerning efficiency, reproducibility, calibration, credit attribution. We present a case study of practical techniques deployed in Google's search ads CTR model. This paper provides an industry case study highlighting important areas of current ML research and illustrating how impactful new ML methods are evaluated and made useful in a large-scale industrial setting.
翻译:对于工业规模的广告系统来说,预测点击率是一个中心问题。对工业规模的广告系统来说,预测点击率(CTR)是一个中心问题。对用户来说,Ad点击是一个重要的用户任务类别,常常被用作广告对用户有用的主要信号。此外,在每点击每点击一次向广告商收费的成本-每点击一次的广告系统中,点击率预期直接用于价值估计。因此,CTR模型开发是大多数互联网广告公司的重要投资。为解决这些问题,设计出许多适合在线学习的机器学习技术,这些技术远远超过了传统的精确度改进,特别是在效率、再生性、校准、信用归属等方面。我们介绍了谷歌搜索广告CTR模型中所采用的实用技术的案例研究。本文提供了一项行业案例研究,重点介绍了当前ML研究的重要领域,并说明了如何评价新的影响性ML方法,并在大规模工业环境中使其变得有用。