Online dialogic instructions are a set of pedagogical instructions used in real-world online educational contexts to motivate students, help understand learning materials, and build effective study habits. In spite of the popularity and advantages of online learning, the education technology and educational data mining communities still suffer from the lack of large-scale, high-quality, and well-annotated teaching instruction datasets to study computational approaches to automatically detect online dialogic instructions and further improve the online teaching effectiveness. Therefore, in this paper, we present a dataset of online dialogic instruction detection, \textsc{DialogID}, which contains 30,431 effective dialogic instructions. These teaching instructions are well annotated into 8 categories. Furthermore, we utilize the prevalent pre-trained language models (PLMs) and propose a simple yet effective adversarial training learning paradigm to improve the quality and generalization of dialogic instruction detection. Extensive experiments demonstrate that our approach outperforms a wide range of baseline methods. The data and our code are available for research purposes from: \url{https://github.com/ai4ed/DialogID}.
翻译:在线对话指导是现实世界在线教育环境中用于激励学生、帮助理解学习材料和建立有效的学习习惯的一套教学指令,尽管在线学习广受欢迎而且具有优势,教育技术和教育数据采矿社区仍然缺乏大规模、高质量和有良好说明的教学指导数据集,无法研究自动检测在线对话指令和进一步提高在线教学效力的计算方法,因此,我们在本文件中提供了一套在线对话指导检测数据集,该数据集包含30 431项有效的对话指令,这些教学指令被充分标记为8类。此外,我们利用普遍流行的预先培训的语言模式,提出简单而有效的对抗性培训学习模式,以提高对话教育检测的质量和普遍化。广泛的实验表明,我们的方法超越了广泛的基线方法。数据和我们的代码可用于研究目的:https://github.com/ai4ed/DialogiogID}。