Generative graph self-supervised learning (SSL) aims to learn node representations by reconstructing the input graph data. However, most existing methods focus on unsupervised learning tasks only and very few work has shown its superiority over the state-of-the-art graph contrastive learning (GCL) models, especially on the classification task. While a very recent model has been proposed to bridge the gap, its performance on unsupervised learning tasks is still unknown. In this paper, to comprehensively enhance the performance of generative graph SSL against other GCL models on both unsupervised and supervised learning tasks, we propose the SeeGera model, which is based on the family of self-supervised variational graph auto-encoder (VGAE). Specifically, SeeGera adopts the semi-implicit variational inference framework, a hierarchical variational framework, and mainly focuses on feature reconstruction and structure/feature masking. On the one hand, SeeGera co-embeds both nodes and features in the encoder and reconstructs both links and features in the decoder. Since feature embeddings contain rich semantic information on features, they can be combined with node embeddings to provide fine-grained knowledge for feature reconstruction. On the other hand, SeeGera adds an additional layer for structure/feature masking to the hierarchical variational framework, which boosts the model generalizability. We conduct extensive experiments comparing SeeGera with 9 other state-of-the-art competitors. Our results show that SeeGera can compare favorably against other state-of-the-art GCL methods in a variety of unsupervised and supervised learning tasks.


翻译:生成图形自监督学习(SSL)的目的是通过重建输入图形数据来学习节点显示。然而,大多数现有方法仅侧重于不受监督的学习任务,而且很少有工作显示它优于最先进的图形对比学习模型,特别是在分类任务方面。虽然提出了最近的模型来缩小差距,但其在未经监督的学习任务上的性能仍然未知。在本文中,为了全面提高基因图形 SSL 的性能,以其他不受监督和监督的GCL 高级学习任务,我们提出了SeeGera 模型,该模型基于自监督的变异图自动编码(VGAE)的组合。具体地说,SeeGera采用了半隐含的变异框架,一个等级变异框架,主要侧重于特征重建以及结构/地形遮掩。一方面,Seeera 双向隐藏的节点和特性,在未监督和监督的学习任务中重建链接和特性。由于将自我监督的变异性结构的特性与精细的G,因此,在重建过程中可以提供其他变异的精度,在常规结构中可以提供其他变异性信息。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
90+阅读 · 2021年6月29日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月26日
Arxiv
14+阅读 · 2021年8月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员