It is well known that apps running on mobile devices extensively track and leak users' personally identifiable information (PII); however, these users have little visibility into PII leaked through the network traffic generated by their devices, and have poor control over how, when and where that traffic is sent and handled by third parties. In this paper, we present the design, implementation, and evaluation of ReCon: a cross-platform system that reveals PII leaks and gives users control over them without requiring any special privileges or custom OSes. ReCon leverages machine learning to reveal potential PII leaks by inspecting network traffic, and provides a visualization tool to empower users with the ability to control these leaks via blocking or substitution of PII. We evaluate ReCon's effectiveness with measurements from controlled experiments using leaks from the 100 most popular iOS, Android, and Windows Phone apps, and via an IRB-approved user study with 92 participants. We show that ReCon is accurate, efficient, and identifies a wider range of PII than previous approaches.
翻译:众所周知,在移动设备上运行的应用程序广泛跟踪和泄漏用户个人识别信息(PII);然而,这些用户通过设备产生的网络流量渗漏到 PII中,其可见度很少,对第三方发送和处理该通信的方式、时间和地点控制不力。 在本文中,我们介绍了Recon的设计、实施和评价:一个跨平台系统,披露PII的泄漏,并给予用户控制,而不需要任何特殊特权或定制操作系统。Recon利用机器学习,通过检查网络流量来披露潜在的PII渗漏,并提供可视化工具,使用户有能力通过屏蔽或替换PII来控制这些泄漏。我们用来自100个最受欢迎的iOS、Android和Windows电话应用程序的受控实验,并通过IRB核准的用户调查92名参与者进行。我们显示,Recon是准确、高效的,并确定了比以往更广泛的PII方法。