Recoverable robust optimization is a popular multi-stage approach, in which it is possible to adjust a first-stage solution after the uncertain cost scenario is revealed. We consider recoverable robust optimization in combination with discrete budgeted uncertainty. In this setting, it seems plausible that many problems become $\Sigma^p_3$-complete and therefore it is impossible to find compact IP formulations of them (unless the unlikely conjecture NP $= \Sigma^p_3$ holds). Even though this seems plausible, few concrete results of this kind are known. In this paper, we fill that gap of knowledge. We consider recoverable robust optimization for the nominal problems of Sat, 3Sat, vertex cover, dominating set, set cover, hitting set, feedback vertex set, feedback arc set, uncapacitated facility location, $p$-center, $p$-median, independent set, clique, subset sum, knapsack, partition, scheduling, Hamiltonian path/cycle (directed/undirected), TSP, $k$-disjoint path ($k \geq 2$), and Steiner tree. We show that for each of these problems, and for each of three widely used distance measures, the recoverable robust problem becomes $\Sigma^p_3$-complete. Concretely, we show that all these problems share a certain abstract property and prove that this property implies that their robust recoverable counterpart is $\Sigma^p_3$-complete. This reveals the insight that all the above problems are $\Sigma^p_3$-complete 'for the same reason'. Our result extends a recent framework by Gr\"une and Wulf.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员