We analyze the best achievable performance of Bayesian learning under generative models by defining and upper-bounding the minimum excess risk (MER): the gap between the minimum expected loss attainable by learning from data and the minimum expected loss that could be achieved if the model realization were known. The definition of MER provides a principled way to define different notions of uncertainties in Bayesian learning, including the aleatoric uncertainty and the minimum epistemic uncertainty. Two methods for deriving upper bounds for the MER are presented. The first method, generally suitable for Bayesian learning with a parametric generative model, upper-bounds the MER by the conditional mutual information between the model parameters and the quantity being predicted given the observed data. It allows us to quantify the rate at which the MER decays to zero as more data becomes available. Under realizable models, this method also relates the MER to the richness of the generative function class, notably the VC dimension in binary classification. The second method, particularly suitable for Bayesian learning with a parametric predictive model, relates the MER to the minimum estimation error of the model parameters from data. It explicitly shows how the uncertainty in model parameter estimation translates to the MER and to the final prediction uncertainty. We also extend the definition and analysis of MER to the setting with multiple model families and the setting with nonparametric models. Along the discussions we draw some comparisons between the MER in Bayesian learning and the excess risk in frequentist learning.


翻译:我们通过界定和上限最低超额风险(MER)来分析Bayesian学习在基因模型下的最佳可实现业绩:通过从数据学习可以实现的最低预期损失与如果模型实现可以实现的最低预期损失之间的差距;MER的定义为界定Bayesian学习中不确定因素的不同概念提供了原则性方法,包括疏导不确定性和最起码的缩略语不确定性。提出了计算MER的上界的两种方法。第一种方法,一般适合Bayesian学习过量,采用比喻基因模型,在模型参数参数参数参数和所观察到的数据所预测的数量之间使用有条件的相互信息,将最低预期损失与最低预期损失之间的差距联系起来。根据可变现模型的定义,MER可以量化MER的衰减为零的比率。在可变模型下,还将MER与精度功能的丰富程度联系起来,特别是在二进分类中VC层面。第二种方法,特别适合Bayesian学习带有参数的预测模型,将MER与模型中的一些非估计误差与经常参数和从所观察到的数据中,并明确地将MERMER的不确定性与MER的测测测测测测测算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
14+阅读 · 2020年12月17日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员