Optimal propensity score matching has emerged as one of the most ubiquitous approaches for causal inference studies on observational data; However, outstanding critiques of the statistical properties of propensity score matching have cast doubt on the statistical efficiency of this technique, and the poor scalability of optimal matching to large data sets makes this approach inconvenient if not infeasible for sample sizes that are increasingly commonplace in modern observational data. The stratamatch package provides implementation support and diagnostics for `stratified matching designs,' an approach which addresses both of these issues with optimal propensity score matching for large-sample observational studies. First, stratifying the data enables more computationally efficient matching of large data sets. Second, stratamatch implements a `pilot design' approach in order to stratify by a prognostic score, which may increase the precision of the effect estimate and increase power in sensitivity analyses of unmeasured confounding.
翻译:最佳偏差分数匹配是观测数据因果推断研究最普遍的方法之一; 然而,对偏差分比对统计特性的突出批评使人对这一技术的统计效率产生怀疑,而最佳匹配与大型数据集的可调整性差,使得这一方法即使不适于现代观测数据中日益常见的样本大小,也难以采用。 阶层匹配包为“批准匹配设计”提供实施支持和诊断,这种方法处理这两个问题,为大型抽样观测研究提供最佳偏差分比对。 首先,对数据进行分分,使得大数据集的计算效率更高。 其次,阶梯组合采用“试点设计”方法,以便用预测性分数进行分解,这可能会提高效果估计的精确度,并增加未计量混杂的敏感度分析的能量。