Before the current pandemic, influenza and respiratory syncytial virus (RSV) were the leading etiological agents of seasonal acute respiratory infections (ARI) around the world. In this setting, medical doctors typically based the diagnosis of ARI on patients' symptoms alone and did not routinely conduct virological tests necessary to identify individual viruses, limiting the ability to study the interaction between multiple pathogens and to make public health recommendations. We consider a stochastic kinetic model (SKM) for two interacting ARI pathogens circulating in a large population and an empirically-motivated background process for infections with other pathogens causing similar symptoms. An extended marginal sampling approach, based on the linear noise approximation to the SKM, integrates multiple data sources and additional model components. We infer the parameters defining the pathogens' dynamics and interaction within a Bayesian model and explore the posterior trajectories of infections for each illness based on aggregate infection reports from six epidemic seasons collected by the state health department and a subset of virological tests from a sentinel program at a general hospital in San Luis Potos\'{i}, M\'{e}xico. We interpret the results and make recommendations for future data collection strategies.
翻译:在目前这一大流行之前,流感和呼吸同步病毒(RSV)是全世界季节性急性呼吸道感染的主要病原体,在这一背景下,医生通常仅根据病人的症状诊断急性呼吸道感染,而没有例行进行必要的病毒测试,以识别个别病毒,限制研究多种病原体之间的相互作用和提出公共卫生建议的能力。我们认为,两种相互作用的急性呼吸道感染性病原体在大量人口中流通,是一种以经验为动力的背景过程,对引起类似症状的其他病原体的感染进行试验。根据SKM线性噪声近似的扩大边际取样方法,将多种数据来源和更多的模型组成部分综合在一起。我们推算出确定病原体动态和在巴伊斯模式内相互作用的参数,并根据州卫生部门收集的六个流行病季节的感染综合报告,以及圣路易斯波托斯总医院一个寄生方案的一个病毒测试子。我们为今后收集数据的结果和建议。