We study the complexity of approximating the partition function $Z_{\mathrm{Ising}}(G; \beta)$ of the Ising model in terms of the relation between the edge interaction~$\beta$ and a parameter~$\Delta$ which is an upper bound on the maximum degree of the input graph~$G$. Following recent trends in both statistical physics and algorithmic research, we allow the edge interaction~$\beta$ to be any complex number. Many recent partition function results focus on complex parameters, both because of physical relevance and because of the key role of the complex case in delineating the tractability/intractability phase transition of the approximation problem. In this work we establish both new tractability results and new intractability results. Our tractability results show that $Z_{\mathrm{Ising}}(-; \beta)$ has an FPTAS when $\lvert \beta - 1 \rvert / \lvert \beta + 1 \rvert < \tan(\pi / (4 \Delta - 4))$. The core of the proof is showing that there are no inputs~$G$ that make the partition function~$0$ when $\beta$ is in this range. Our result significantly extends the known zero-free region of the Ising model (and hence the known approximation results). Our intractability results show that it is $\mathrm{\#P}$-hard to multiplicatively approximate the norm and to additively approximate the argument of $Z_{\mathrm{Ising}}(-; \beta)$ when $\lvert \beta - 1 \rvert / \lvert \beta + 1 \rvert > 1/ \sqrt{\Delta - 1}$. These are the first results to show intractability of approximating $Z_{\mathrm{Ising}}(-, \beta)$ on bounded degree graphs with complex~$\beta$. Moreover, we demonstrate situations in which zeros imply hardness of approximation in the Ising model.
翻译:我们研究分区功能 $\ mathrm{ (G;\beta) 的复杂程度。 根据最近统计物理和算法研究的趋势, 我们允许边际互动~\ beta$ 成为任何复杂数字。 许多最近的分区函数以复杂参数为重点, 原因既在于物理相关性, 也在于复杂案例对近似问题色度/ 利差阶段转换关系中的关键作用。 在此工作中, 我们既要建立新的可移动性结果,又要建立新的可移动性结果。 我们的可感应结果显示 $: mathr{ Q_ (-); 当 统计物理和算法研究的最近趋势, 我们允许边际互动~\ beta$ 成为任何复杂数字。 许多最近的分区函数结果以复杂参数为重点, 既是因为物理相关性, 也因为复杂案例在线性- 利塔$ 的可移动性/ 可移动性阶段 。 当我们的核心值显示的是 $ (4\\ d) 开始显示核心值的结果, 当我们的核心值显示的时候, 正在显示的是 美元 正在显示 显示 。