Let $\mathbb{F}_q$ be a finite field, and let $F \in \mathbb{F}_q [X]$ be a polynomial with $d = \text{deg} \left( F \right)$ such that $\gcd \left( d, q \right) = 1$. In this paper we prove that the $c$-Boomerang uniformity, $c \neq 0$, of $F$ is bounded by - $d^2$ if $c^2 \neq 1$, - $d \cdot (d - 1)$ if $c = -1$, - $d \cdot (d - 2)$ if $c = 1$. For all cases of $c$, we present tight examples for $F \in \mathbb{F}_q [X]$. Additionally, for the proof of $c = 1$ we establish that the bivariate polynomial $F (x) - F (y) + a \in k [x, y]$, where $k$ is a field of characteristic $p$ and $a \in k \setminus \{ 0 \}$, is absolutely irreducible if $p \nmid \text{deg} \left( F \right)$.
翻译:令 $\mathbb{F}_q$ 为有限域,$F \in \mathbb{F}_q [X]$ 为多项式,其次数 $d = \text{deg} \left( F \right)$ 满足 $\gcd \left( d, q \right) = 1$。本文证明:当 $c \neq 0$ 时,$F$ 的 $c$-Boomerang 一致性具有如下上界:若 $c^2 \neq 1$,则界为 $d^2$;若 $c = -1$,则界为 $d \cdot (d - 1)$;若 $c = 1$,则界为 $d \cdot (d - 2)$。对于 $c$ 的所有情形,我们均给出了 $\mathbb{F}_q [X]$ 中达到该界的紧示例。此外,在证明 $c = 1$ 的情形时,我们建立了以下结论:设 $k$ 为特征 $p$ 的域,$a \in k \setminus \{ 0 \}$,若 $p \nmid \text{deg} \left( F \right)$,则二元多项式 $F (x) - F (y) + a \in k [x, y]$ 是绝对不可约的。