The textbook Newton's iteration is practically inapplicable on nonisolated solutions of unregularized nonlinear systems. With a simple modification, a version of Newton's iteration regains its local quadratic convergence to nonisolated zeros of smooth mappings assuming the solutions are semiregular as properly defined regardless of whether the system is square, underdetermined or overdetermined. Furthermore, the iteration serves as a de facto regularization mechanism for computing singular zeros from empirical data. Even if the given system is perturbed so that the nonisolated solution disappears, the iteration still locally converges to a stationary point that approximates a solution of the underlying system with an error bound in the same order of the data accuracy. Geometrically, the iteration approximately converges to the nearest point on the solution manifold. This extension simplifies nonlinear system modeling by eliminating the zero isolation process and enables a wide range of applications in algebraic computation.
翻译:教科书 Newton 的迭代实际上不适用于非常规非线性系统的非孤立解决方案。 简单修改后, 牛顿的迭代版本重新获得其本地的二次趋同点与平滑绘图的非孤立零点, 假设解决方案按正确定义是半常规的, 不论系统是正方的、 未定的还是超定的。 此外, 迭代作为从实证数据中计算单点零的事实上的正规化机制 。 即使给定系统被绕过, 以致非孤立解决方案消失, 迭代仍然会在当地接近一个固定点, 以数据精确度相同顺序约束的错误为基本系统解决方案的近点。 几何测量, 迭代相近于解决方案多处点的迭代相趋近点 。 此扩展通过消除零隔离进程, 并使得非线性系统建模化, 从而在代数计算中能够进行广泛的应用 。