Given a planar straight-line graph $G=(V,E)$ in $\mathbb{R}^2$, a \emph{circumscribing polygon} of $G$ is a simple polygon $P$ whose vertex set is $V$, and every edge in $E$ is either an edge or an internal diagonal of $P$. A circumscribing polygon is a \emph{polygonization} for $G$ if every edge in $E$ is an edge of $P$. We prove that every arrangement of $n$ disjoint line segments in the plane has a subset of size $\Omega(\sqrt{n})$ that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to $\mathbb{R}^3$. We show that it is NP-complete to decide whether a given graph $G$ admits a circumscribing polygon, even if $G$ is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization.
翻译:根据一个平面直线图形$G=(V,E)$(美元)的平面直线图$(美元)=(V,E)$(美元),一个G$(美元)的正弦多边形,是一个简单的多边方元$(美元),其顶点设置为美元,而每个E$的边缘要么是边缘,要么是内部对角(美元),要么是边缘或内部对角(美元)。一个环绕多边形是美元(美元),如果每端点(美元)的每端点为1美元(美元)的边缘为1美元(美元)的边缘值。我们证明,每平面的美元脱节线部分的每个安排都有一个大小为$(美元)(sqrt{n})的子块,它允许一个环绕多边方元(美元),这是20年来首次改进。我们探讨了环绕多边方形多边形的边框与其他问题之间的关系,以及概括到$(mathbbb{R)3$(美元)的宽度。我们表明,要确定一个图形正态($G)是否承认一个硬度的多方形的多方形,即使我们将显示一个旧的正数(美元)是30美元的矩。