Sonification, or encoding information in meaningful audio signatures, has several advantages in augmenting or replacing traditional visualization methods for human-in-the-loop decision-making. Standard sonification methods reported in the literature involve either (i) using only a subset of the variables, or (ii) first solving a learning task on the data and then mapping the output to an audio waveform, which is utilized by the end-user to make a decision. This paper presents a novel framework for sonifying high-dimensional data using a complex growth transform dynamical system model where both the learning (or, more generally, optimization) and the sonification processes are integrated together. Our algorithm takes as input the data and optimization parameters underlying the learning or prediction task and combines it with the psychoacoustic parameters defined by the user. As a result, the proposed framework outputs binaural audio signatures that not only encode some statistical properties of the high-dimensional data but also reveal the underlying complexity of the optimization/learning process. Along with extensive experiments using synthetic datasets, we demonstrate the framework on sonifying Electro-encephalogram (EEG) data with the potential for detecting epileptic seizures in pediatric patients.
翻译:文献中报告的标准化引文方法涉及:(一) 仅使用一个变量子集,或(二) 首先解决数据方面的学习任务,然后将输出映射成一个声波形,最终用户用它来作出决定。本文件展示了一个利用复杂的成长变异动态系统模型,在学习(或更一般地说优化)和声学进程相结合的情况下,对高维数据进行代谢的新框架。我们的算法将学习或预测任务的数据和优化参数作为输入,并将其与用户界定的心理声学参数结合起来。结果,拟议框架输出的双声学信号不仅将高维数据的某些统计属性编码起来,而且还揭示了优化/学习进程的潜在复杂性。在使用合成数据集进行广泛实验的同时,我们展示了对电脑图(EEGEG)数据进行代谢的框架,并展示了在显性癫痫中检测癫痫病例的潜力。