Sonification, or encoding information in meaningful audio signatures, has several advantages in augmenting or replacing traditional visualization methods for human-in-the-loop decision-making. Standard sonification methods reported in the literature involve either (i) using only a subset of the variables, or (ii) first solving a learning task on the data and then mapping the output to an audio waveform, which is utilized by the end-user to make a decision. This paper presents a novel framework for sonifying high-dimensional data using a complex growth transform dynamical system model where both the learning (or, more generally, optimization) and the sonification processes are integrated together. Our algorithm takes as input the data and optimization parameters underlying the learning or prediction task and combines it with the psychoacoustic parameters defined by the user. As a result, the proposed framework outputs binaural audio signatures that not only encode some statistical properties of the high-dimensional data but also reveal the underlying complexity of the optimization/learning process. Along with extensive experiments using synthetic datasets, we demonstrate the framework on sonifying Electro-encephalogram (EEG) data with the potential for detecting epileptic seizures in pediatric patients.


翻译:文献中报告的标准化引文方法涉及:(一) 仅使用一个变量子集,或(二) 首先解决数据方面的学习任务,然后将输出映射成一个声波形,最终用户用它来作出决定。本文件展示了一个利用复杂的成长变异动态系统模型,在学习(或更一般地说优化)和声学进程相结合的情况下,对高维数据进行代谢的新框架。我们的算法将学习或预测任务的数据和优化参数作为输入,并将其与用户界定的心理声学参数结合起来。结果,拟议框架输出的双声学信号不仅将高维数据的某些统计属性编码起来,而且还揭示了优化/学习进程的潜在复杂性。在使用合成数据集进行广泛实验的同时,我们展示了对电脑图(EEGEG)数据进行代谢的框架,并展示了在显性癫痫中检测癫痫病例的潜力。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
12+阅读 · 2018年6月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月14日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning Recommender Systems from Multi-Behavior Data
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
12+阅读 · 2018年6月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员