In the smart grid, huge amounts of consumption data are used to train deep learning models for applications such as load monitoring and demand response. However, these applications raise concerns regarding security and have high accuracy requirements. In one hand, the data used is privacy-sensitive. For instance, the fine-grained data collected by a smart meter at a consumer's home may reveal information on the appliances and thus the consumer's behaviour at home. On the other hand, the deep learning models require big data volumes with enough variety and to be trained adequately. In this paper, we evaluate the use of Edge computing and federated learning, a decentralized machine learning scheme that allows to increase the volume and diversity of data used to train the deep learning models without compromising privacy. This paper reports, to the best of our knowledge, the first use of federated learning for household load forecasting and achieves promising results. The simulations were done using Tensorflow Federated on the data from 200 houses from Texas, USA.
翻译:在智能网格中,大量消费数据被用于培训诸如载荷监测和需求响应等应用的深层次学习模式,然而,这些应用引起了对安全的关切,并具有很高的准确性要求。一方面,所使用的数据对隐私敏感。例如,在消费者家中由智能仪收集的精细数据可能揭示有关电器的信息,从而揭示消费者在家里的行为。另一方面,深层学习模式需要大量数据,数量足够多,并需要经过充分培训。在本文中,我们评估了Edge计算和联合学习的使用情况,这是一个分散式机器学习计划,可以增加用于培训深层学习模式的数据的数量和多样性,同时又不损害隐私。本文报告,根据我们的知识,首次使用联合学习进行家庭载荷预测,并取得有希望的结果。在来自美国得克萨斯州200所提供的数据中,用Tensorflow进行了模拟。